

Pt^{II}-Mediated Nitrile–Tetramethylguanidine Coupling as a Key Step for a Novel Synthesis of 1,6-Dihydro-1,3,5-triazines $^{\circ}$

Pavel V. Gushchin,[†] Nadezhda A. Bokach,[†] Konstantin V. Luzyanin,^{†,‡} Alexey A. Nazarov,[§] Matti Haukka,^{||} and Vadim Yu. Kukushkin^{*,†}

Saint Petersburg State University, 198504 Stary Petergof, Russian Federation, Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-01 Lisbon, Portugal, Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090, Vienna, Austria, and Department of Chemistry, University of Joensuu, P.O. Box 111, FI-80101, Joensuu, Finland

Received September 30, 2006

The coupling between tetramethylguanidine, HN=C(NMe₂)₂, and coordinated organonitriles in the platinum(II) complexes cis/trans-[PtCl₂(RCN)₂] (R = Me, Et, Ph) proceeds rapidly under mild conditions to afford the diimino compounds containing two N-bound monodentate 1,3-diaza-1,3-diene ligands [PtCl₂{NH=C(R)N=C(NMe₂)₂] (R = Et, trans-1; R = Ph, trans-2; R = Me, cis-3; R = Et, cis-4), and this reaction is the first observation of metalmediated nucleophilic addition of a guanidine to ligated nitrile. Complexes 1-4 were characterized by elemental analyses (C, H, N), X-ray diffraction, FAB mass spectrometry, IR, and ¹H and ¹³C{¹H} NMR spectroscopies; assignment of signals from E/Z-forms of 1,3-diaza-1,3-diene ligands and verification of routes for their $Z \rightleftharpoons E$ isomerization in solution were performed using 2D ¹H,¹H-COSY, ¹H,¹³C-HETCOR, and 1D NOE NMR experiments. The newly formed and previously unknown 1,3-diaza-1,3-dienes NH=C(R)N=C(NMe₂)₂ were liberated from the platinum(II) complexes [PtCl₂{NH=C(R)N=C(NMe₂)₂]₂] (1-3) by substitution with 2 equiv of 1,2-bis-(diphenylphosphino)ethane (dppe) to give the uncomplexed HN=C(R)N=C(NMe₂)₂ species (5-7) in solution and the solid [Pt-(dppe)₂](Cl)₂. The former were utilized in situ, after filtration of the latter, in the reaction with 1,3-di-p-tolylcarbodiimide, (p-tol)N=C=N(tol-p), in CDCl₃ to generate (6E)-N,N-dimethyl-1-(4-methylphenyl)-6-[(4-methylphenyl)imino]-1,6-dihydro-1,3,5-triazin-2-amines) (8-10) due to the [4 + 2]-cycloaddition accompanying elimination of HNMe₂. The formulation of 8–10 is based on ESI-MS, ¹H, ¹³C{¹H} NMR, and X-ray crystal structures determined for 9 and 10. The reaction of 1,3-diaza-1,3-dienes with 1,3-di-p-tolylcarbodiimide, described in this article, constitutes a novel synthetic approach to a useful class of heterocyclic species like 1,6-dihydro-1,3,5-triazines.

Introduction

The versatility of reactivity modes of imines RR'C=NR" and the overall chemical instability of these species are mostly associated with the availability of the nitrogen lone pair, whose activity can be modified by alteration of donor/ acceptor properties of substituents at the azomethine group.¹ Donor substituents increase basicity of the N center, and this

"University of Joensuu.

results in a substantial activation of the imines toward di-, tri-, and polymerizations and various redox-type conversions. In particular, the imines R_2C =NH with two donor substituents are usually so reactive in hydrolysis and trimerizations that some of these compounds are commonly treated as *elusive*.²⁻⁴ The too high reactivity of such imines strongly restricts their synthetic utilization.

Recently we^{5,6} and others⁷ found that platinum group metal centers provide enormous stabilization of the potentially unstable imines R₂C=NH due to an efficient blocking of the electron pair by coordination. Respectively, these ligands can be "stored" without changes in the complexed form at normal conditions for a prolonged time. We also reported^{8a} that the combination of the inertness of *coordinated* imines R₂C=NH with their high reactivity in the *uncomplexed state*

^{*} To whom correspondence should be addressed. E-mail: kukushkin@ VK2100.spb.edu.

 $^{^{\}rm O}$ Dedicated to Professor Mikhail G. Voronkov on the occasion of his 85th birthday.

[†] St. Petersburg State University.

[‡] Instituto Superior Técnico.

[§] University of Vienna.

Constable, E. C. Metals and Ligand Reactivity. An Introduction to the Organic Chemistry of Metal Complexes; VCH: Weinheim, 1995.

could have some intrinsic practical implications. Indeed, if the imine ligand is displaced under mild conditions from its complex, the liberated reactive R_2C =NH species can be immediately used in situ for further reactions. We felt that this "pop-the-cork" strategy⁸ warrants additional investigation and can be applied to a metal-mediated synthesis and stabilization of unusual 1,3-diaza-1,3-dienes followed by their further exploitation (after liberation) in metal-free synthetic transformations.

Thus, within our ongoing project on the metal-mediated nitrile—imine coupling,^{8–14} we attempted to extend our previous studies on reactions between platinum-bound RCN species and HN=ER_n (ER_n = CPh₂,⁹ C(Alkyl)(OAlkyl),⁸ C(Ar)(NHAr),¹⁰ SAr₂,^{11,12} PPh₃¹³) to such specific imines as guanidines (ER_n = C(NR₂)₂) to perform nitrile—guanidine coupling and apply thus formed 1,3-diaza-1,3-dienes in further reactions.

The scenario of this work was the following. (i) To use a metal center as the promoter for formation of 1,3-diaza-1,3-dienes derived from the previously unknown nucleophilic addition of guanidines to (RCN)[M] species. For this part of the study we addressed *cis/trans*-[PtCl₂(RCN)₂] (R =

- (3) Prenzler, P. D.; Hockless, D. C. R.; Heath, G. A. Inorg. Chem. 1997, 36, 5845 and references therein.
- (4) Nagao, H.; Kikuchi, T.; Inukai, M.; Ueda, A.; Oi, T.; Suzuki, N.; Yamasaki, M. Angew. Chem. 2006, 45, 3131. Platz, M. S. In Reactive Intermediate Chemistry; Moss, R. A., Platz, M. S., Jones, M., Eds.; Wiley: New York, 2004; p 507. Reiser, A.; Wagner, H. M. In The chemistry of the azido group; Patai, S. Ed.; Intersceience: New York, 1971; p 468. Milligan, D.; Jacox, M. E. J. Chem. Phys. 1963, 39, 712. Milligan, D. E. J. Chem. Phys. 1961, 35, 1491.
- (5) For reviews, see: Kukushkin, V. Yu.; Pombeiro, A. J. L. Chem. Rev. 2002, 102, 1771. Pombeiro, A. J. L.; Kukushkin, V. Yu. Reactions of Coordinated Nitriles. In Comprehensive Coordination Chemistry, 2nd ed.; Elsevier: New York, 2004; Vol. 1, Chapter 1.34, pp 639– 660.
- (6) Bokach, N. A.; Kukushkin, V. Yu.; Kuznetsov, M. L.; Garnovskii, D. A.; Natile, G.; Pombeiro, A. J. L. *Inorg. Chem.* **2002**, *41*, 2041.
- (7) For a review, see: Michelin, R. A.; Mozzon, M.; Bertani, R. Coord. Chem. Rev. 1996, 147, 299.
- (8) (a) Bokach, N. A.; Kukushkin, V. Yu.; Haukka, M.; Fraústo da Silva, J. J. R.; Pombeiro, A. J. L. *Inorg. Chem.* 2003, 42, 3602. (b) Selby, H. D.; Zheng, Z. P. *Comm. Inorg. Chem.* 2005, 26, 75.
- (9) Garnovskii, D. A.; Kukushkin, V. Yu.; Haukka, M.; Wagner, G.; Pombeiro, A. J. L. J. Chem. Soc., Dalton Trans. 2001, 560.
- (10) Bokach, N. A.; Kuznetsova, T. V.; Simanova, S. A.; Haukka, M.; Pombeiro, A. J. L.; Kukushkin, V. Yu. *Inorg. Chem.* **2005**, *44*, 5152. Sarova, G. H.; Bokach, N. A.; Fedorov, A. A.; Berberan-Santos, M. N.; Kukushkin, V. Yu.; Haukka, M.; Fraústo da Silva, J. J. R.; Pombeiro, A. J. L. *Dalton Trans.* **2006**, 3798.
- (11) Makarycheva-Mikhailova, A. V.; Bokach, N. A.; Kukushkin, V. Yu.; Kelly, P. F.; Gilby, L. M.; Kuznetsov, M. L.; Holmes, K. E.; Haukka, M.; Parr, J.; Stonehouse, J. M.; Elsegood, M. R. J.; Pombeiro, A. J. L. *Inorg. Chem.* **2003**, *42*, 301.
- (12) Makarycheva-Mikhailova, A. V.; Selivanov, S. I.; Bokach, N. A.; Kukushkin, V. Yu.; Kelly, P. F.; Pombeiro, A. J. L. *Russ. Chem. Bull.* 2004, 1618.
- (13) Bokach, N. A.; Kukushkin, V. Yu.; Kelly, P. F.; Haukka, M.; Pombeiro, A. J. L. Dalton Trans. 2005, 1354.
- (14) Kelly, P. F.; Slawin, A. M. Z. Chem. Commun. 1999, 1081. Kelly, P. F.; Slawin, A. M. Z. Eur. J. Inorg. Chem. 2001, 263.

Me,¹⁵ Et,¹⁶ Ph¹⁷) compounds insofar as it has been demonstrated that the Pt^{II} center provides sufficient activation of RCN ligands to achieve the metal-mediated nitrile-imine integration.⁸⁻¹⁴ Tetramethylguanidine (HN=C(NMe₂)₂; TMG), commercially available and very soluble in organic solvents, was used as a nucleophile for the addition. (ii) To perform the liberation of the ligated 1,3-diaza-1,3-dienes HN= $C(R)N=C(NMe_2)_2$, stabilized by coordination, and characterize them in the free form. Despite the general inertness of the imino complexes toward ligand displacement, some substitution methods have been previously developed,^{6,18,19} and it was anticipated to apply them for the liberation. (iii) To utilize the released 1,3-diaza-1,3-dienes HN=C(R)N= $C(NMe_2)_2$ species in situ for further reactions by studying their interplay with the carbodiimide (p-tol)N=C=N(tol-p), which is a highly reactive reagent toward various N-donor nucleophiles.²⁰ All these results-showing the first example of nitrile-guanidine coupling and application of the latter reaction as the key step to achieve useful class of heterocycles, i.e., 1,6-dihydro-1,3,5-triazine-2-amines-are reported herein.

Results and Discussion

Nitrile-Guanidine Coupling at a Pt(II) Center. The coupling between platinum(II)-bound nitriles in complexes $[PtCl_2(RCN)_2]$ and tetramethylguanidine (TMG) proceeds in a molar ratio of 1:2 at 20–25 °C in MeCN (R = Me), EtCN (R = Et), or CH₂Cl₂ (R = Ph) and results in formation of diimino complexes containing two *N*-bound monodentate 1,3-diaza-1,3-diene ligands $[PtCl_2{NH=C(R)N=C(NMe_2)_2}_2]$. It was proved that TMG does not react with RCN (R = Et, Ph) under the coupling conditions, and this implies that the nitrile-TMG coupling is Pt^{II} mediated. We believe that the (1,3-diaza-1,3-diene)Pt^{II} complexes are presumably formed by nucleophilic attack of the imine N atom on the electrophilically activated carbon atom of the nitrile.

Treatment of *trans*-[PtCl₂(RCN)₂] (R = Et, Ph) with TMG allows isolation of the *trans*-[PtCl₂{NH=C(R)N=C(NMe₂)₂}₂] (1 and 2) complexes (route A in Scheme 1). Reaction between *cis*-[PtCl₂(RCN)₂] (R = Me, Et) and TMG leads to

- (15) Fanizzi, F. P.; Intini, F. P.; Maresca, L.; Natile, G. J. Chem. Soc., Dalton Trans. **1990**, 199.
- (16) Svensson, P.; Lövqvist, K.; Kukushkin, V. Yu.; Oskarsson, Å. Acta. Chem. Scand. **1995**, 49, 72. Kukushkin, V. Yu.; Oskarsson, Å; Elding, L. I. Inorg. Synth. **1997**, 31, 279.
- (17) Uchiyama, T.; Nakamura, Y.; Miwa, T.; Kawaguchi, S.; Okeya, S. *Chem. Lett.* **1980**, 337. Uchiyama, T.; Toshiyasu, Y.; Nakamura, Y.; Miwa, T.; Kawaguchi, S. *Bull. Chem. Soc. Jpn.* **1981**, *54*, 181.
- (18) Ferreira, C. M. P.; Guedes, da Silva, M. F. C.; Fraústo da Silva, J. J. R.; Pombeiro, A. J. L.; Kukushkin, V. Yu.; Michelin, R. A. *Inorg. Chem.* 2001, 40, 1134.
- (19) Wagner, G.; Pombeiro, A. J. L.; Kukushkin, V. Yu. J. Am. Chem. Soc. 2000, 122, 3106. Wagner, G.; Haukka, M.; Fraústo da Silva, J. J. R.; Pombeiro, A. J. L.; Kukushkin, V. Yu. Inorg. Chem. 2001, 40, 264. Kukushkin, V. Yu.; Pombeiro, A. J. L.; Wagner, G.; Fraústo da Silva, J. J. R. Patent Portugal WO 01/98283 A1, 2000. Bokach, N. A.; Khripoun, A. V.; Kukushkin, V. Yu.; Haukka, M.; Pombeiro, A. J. L. Inorg. Chem. 2003, 42, 836.
- (20) Guiducci, A. E.; Boyd, C. L.; Mountford, P. Organometallics 2006, 25, 1167. Bell, S. A.; Meyer, T. Y.; Geib, S. J. J. Am. Chem. Soc. 2002, 124, 10698. Molina, P.; Alajarin, M.; Perez de Vega, M. J.; Lopez, A. Heterocycles 1989, 29, 1607. Kurzer, F.; Douraghi-Zadeh, K. J. Chem. Soc. 1965, 3912.

^{(2) (}a) Vicente, J.; Chicote, M.-T.; Abrisqueta, M.-D.; Guerrero, R.; Jones, P. G. Angew. Chem., Int. Ed. Engl. 1997, 36, 1203. (b) Vicente, J.; Chicote, M. T.; Guerrero, R.; Saura-Llamas, I. M.; Jones, P. G.; Ramírez de Arellano, M. C. Chem. Eur. J. 2001, 7, 638. (c) Vicente, J.; Chicote, M. T.; Guerrero, R.; Vicente-Hernández, I.; Jones, P. G. Inorg. Chem. 2003, 42, 7644. (d) Vicente, J.; Chicote, M. T.; Guerrero, R.; Vicente-Hernández, M. M.; Jones, P. G.; Bautista, D. Organometallics 2005, 24, 4506. (e) Vicente, J.; Chicote, M. T.; Guerrero, R.; Vicente-Hernández, I.; Alvarez-Falcón, M. M. Inorg. Chem. 2006, 45, 181.

formation of *cis*-[PtCl₂{NH=C(R)N=C(NMe₂)₂]₂] (**3** and **4**) (route B in Scheme 1). Complexes *cis*-[PtCl₂(RCN)₂] contain admixtures of trans isomers^{15,16} (see Experimental Section); consequently, the isolated *cis*-[PtCl₂{NH=C(R)N=C(NMe₂)₂}₂] was contaminated with the appropriate trans form; the latter can be removed by washing of solid residues obtained upon complete evaporation of the reaction mixtures (see Experimental Section).

The possibility of geometric cis/trans isomerization has been verified for the isomeric pair 1/4. Thus, heating 1 either in the solid state (100 °C, 6 h) or in solution (EtCN, 70 °C, 14 h) with TLC monitoring of the process shows no cis/ trans isomerization but gradual overall degradation of the complex. In contrast, heating 4 under the same conditions gives some quantities of 1 (route C, Scheme 1) along with yet unidentified decomposition products. Heating 4 in the solid state (110 °C, 17 h) with TLC monitoring of the process shows no cis/trans isomerization but gradual overall degradation of 4. Hence, the geometric cis/trans isomers exhibit significant stability and do not isomerize under normal conditions.

Characterization of 1,3-Diaza-1,3-diene Complexes 1–4. Complexes 1–4 have been characterized by elemental analysis, FAB⁺ mass spectrometry, infrared, and NMR (¹H, ¹³C{¹H}) spectroscopies. The compounds give satisfactory C, H, and N elemental analyses for the proposed formulation. In the FAB⁺ mass spectra, 1–4 give the expected molecular ion [M]⁺ along with some fragmentation peaks.

The IR spectroscopic data additionally confirm the nucleophilic addition of TMG to the RCN ligands and rule out the possibility of displacement of nitriles by TMG. Thus, comparison of the IR spectra of **1**–**4** with the spectra of the starting complexes shows the absence of the $\nu(C=N)$ absorption band in the typical range of 2350–2300 cm⁻¹ and the presence of intense stretching bands $\nu(C=N)$ at lower frequencies (1566–1525 cm⁻¹). The latter stretches correspond well to the $\nu(C=N)$ values (1540–1522 cm⁻¹) for Pt^{II}- or Pt^{IV}-bound heterodiazadiene^{11,12,14} or diazadiene species (1561–1540 cm⁻¹) for the previously reported Pt^{II} complexes in which the imidoylamidinato ligand is chelated.¹⁰ In addition, weaker bands due to $\nu(N-H)$ are seen for **1**–**4** in the region between 3510 and 3249 cm⁻¹.

Gushchin et al.

In the ¹H NMR spectra recorded at room temperature, the signal of the proton from the imino group C=NH (δ 6.90-5.42 ppm) is shifted upfield compared to those observed in NMR spectra of other platinum imine complexes (δ 8–9 ppm).²² In the latter, the hydrogen bonding involving the imine C=NH proton was unambiguously recognized, while in our case the position of the signal at such a high field gives indirect evidence that the proton of the C=NH group is not involved in the hydrogen bonding in solution.^{9,14} The ¹³C{¹H} NMR spectra show two signals of the C=N bonds in the range from 177.5 to 162.4 ppm, which corresponds to the characteristic C=N resonances in platinum imine complexes.^{14,18,22,23} In the ${}^{13}C{}^{1}H$ and ${}^{1}H$ NMR spectra, the resonances from the dimethylamino NMe2 carbons and protons appear at δ 40.6–39.2 and 3.14–2.73 ppm, respectively.

In the ¹H NMR spectra measured in CDCl₃, **1**–**4** typically display three or four sets of signals, which can be rationalized by formation of complexes in *EE*-, *EZ*-, and *ZZ*-configurations of the 1,3-diaza-1,3-diene ligands due to *cis*- (for the *E*-form) and *trans*-addition (for the *Z*-form) of TMG to the triple C=N bond and/or slow dynamic noncatalyzed *Z*–*E* isomerization of the ligated diazadiene species similar to those observed recently for other Pt^{IV}-bound diazadiene systems.^{10,12} The difference in chemical shifts between *E*-and *Z*-forms of the ligated imines (0.2–0.8 ppm for N*H* protons and 0.2–0.4 ppm for N*Me*₂ protons) in our case agrees well with those previously reported for the Pt^{IV}-complexed imino esters NH=C(R)OR' (0.3–0.4 ppm; a slightly smaller value (0.1 ppm) was reported for R = Et⁶) and the (imino ester)Pt^{II} complexes (0.6–0.7 ppm).^{24,25}

Assignment of signals from E/Z-forms and verification of routes for their $Z \rightleftharpoons E$ isomerization have been performed using 2D ¹H,¹H-COSY, ¹H,¹³C-HETCOR, and 1D NOE NMR experiments. Thus, addition of TMG to the coordinated nitriles in trans-[PtCl2(EtCN)2] leads to formation of trans- $[PtCl_2\{(Z)-HN=C(Et)N=C(NMe_2)_2\}_2]$ as the main product. Upon dissolution in CDCl₃, the latter complex is subject to a slow dynamic $Z \rightleftharpoons E$ isomerization giving *trans*-[PtCl₂- $\{(E)-HN=C(Et)N=C(NMe_2)_2\}_2$ through the intermediate formation of trans-[PtCl₂{(Z)-HN=C(Et)N=C(NMe₂)₂}{(E)-HN=C(Et)N=C(NMe₂)₂}]; all species were identified by 1D NOE NMR. After 1 day, all forms exist in an equilibrium and the ZZ:EZ:EE isomeric ratio, obtained by ¹H NMR integration, is ca. 1:2:1. Reaction between TMG and trans- $[PtCl_2(PhCN)_2]$ allows isolation of *trans*- $[PtCl_2\{(Z)-HN=$ $C(Ph)N=C(NMe_2)_2$ as the main solid product along with *EE*- and *EZ*-forms of *trans*-[PtCl₂{HN=C(Ph)N=C(NMe₂)₂]₂] as minor species that remain in solution. In the case of trans- $[PtCl_2{HN=C(Ph)N=C(NMe_2)_2}]$, the rate of the $Z \rightleftharpoons E$

⁽²¹⁾ Valenciano, J.; Sanchez-Pavon, E.; Cuadro, A. M.; Vaquero, J. J.; Alvarez-Builla, J. J. Org. Chem. 2001, 66, 8528.

⁽²²⁾ Kukushkin, V. Yu.; Pakhomova, T. B.; Kukushkin, Yu. N.; Herrmann, R.; Wagner, G.; Pombeiro, A. J. L. *Inorg. Chem.* **1998**, *37*, 6511.

⁽²³⁾ Luzyanin, K. V.; Haukka, M.; Bokach, N. A.; Kuznetsov, M. L.; Kukushkin, V. Yu.; Pombeiro, A. J. L. Dalton Trans. 2002, 1882.

⁽²⁴⁾ Fanizzi, F. P.; Intini, F. P.; Natile, G. J. Chem. Soc., Dalton Trans. 1989, 947.

⁽²⁵⁾ Cini, R.; Caputo, P. A.; Intini, F. P.; Natile, G. Inorg. Chem. 1995, 34, 1130.

Figure 1. Thermal ellipsoid view of **1** with atom-numbering scheme. Thermal ellipsoids are drawn with 50% probability.

Figure 2. Thermal ellipsoid view of complex **2** with atom-numbering scheme. Thermal ellipsoids are drawn with 50% probability.

Figure 3. Thermal ellipsoid view of complex **3** with atom-numbering scheme. Thermal ellipsoids are drawn with 30% probability.

isomerization is rather low and after 1 week at 20-25 °C only 10% of the starting ZZ-isomer was isomerized to the other forms.

The selectivity in formation of the *E*- or *Z*-form is less noticeable for the *cis*-[PtCl₂(1,3-diaza-1,3-diene)₂] species than for the appropriate trans complexes. Thus, the reaction of *cis*-[PtCl₂(NCR)₂] (R = Me, Et) with TMG in the corresponding nitriles, used as solvents, gives *cis*-[PtCl₂-{HN=C(R)N=C(NMe₂)₂}, whose ¹H NMR spectrum, measured right after completion of the coupling, shows the simultaneous presence of the *EE*-, *EZ*-, and *ZZ*-isomers in ca. 1:2:2 (R = Me) and ca. 1:3:4 (R = Et) ratios.

X-ray Structure Determinations of Pt Complexes. The structures of 1-4 were determined by X-ray single-crystal diffraction. In 1, 2, and 2b, two new 1,3-diaza-1,3-diene ligands are in the mutually trans position, and they are both in the *E*- (1; Figure 1) and *Z*-configuration (2 and 2b; Figure 2 for 2; for 2b see Figure S1 in Supporting Information). In 3 (Figure 3) and 4 (Figure 4), two new diazadiene ligands are in the *Z*-configuration and cis to each other; the adjacent molecules are linked by weak (NH···Cl)₂ interactions [2.71 Å for 3 and 2.67 Å for 4] (Figure S4, Table S2 and Figure S5, Table S3, respectively).

Figure 4. Thermal ellipsoid view of complex **4** with atom-numbering scheme. Thermal ellipsoids are drawn with 50% probability.

The values of the Pt–Cl bond distances (2.30-2.32 Å)agree well with previously characterized platinum(II) chloride compounds.^{11,25,26} The N(1)-C(1) bond lengths in 1-4 and N(2)-C(3) in **3** [1.296(3), 1.305(4), 1.300(5), 1.300(5), 1.308(7) Å, respectively] correspond, within 3σ , to the typical C=N double bond [mean value 1.279(8) Å in compounds with $C_{Ar}-C=N-C$ moiety²⁷]. The bond lengths N(2)-C(1) in 1 and 2 [1.357(3) and 1.346(4) Å, respectively] have values closer to a C-N single bond [Nsp²-Csp² in amides 1.346(11) Å²⁷]. N(2)-C(4) in **1** [1.326(3) Å], N(2)-C(8) [1.324(4) Å] in 2, N(2)-C(1) [1.332(7) Å] in 3, and N(2)-C(1) [1.334(5) Å] and N(2)-C(4) [1.317(5) Å] in 4 bond lengths are intermediate between those values. These observations demonstrate the presence of electron delocalization for N(2)-C(4) bonds in 1 and 4 and N(2)-C(8) in 2 of the TMG moiety of the Pt(II)-bound 1,3-diaza-1,3-diene species, which is relevant to that observed for the N(1)-C(1) bond length [1.3292(17) Å] of NH=C(NMe₂)₂·HCl (Figure S3) and at any of the uncomplexed substituted guanidinium species $[C-(NH_2)_3]^+$ [av. Nsp²-Csp² is 1.328(15) Å²⁷].

However, in general, the data demonstrate the absence of electron delocalization in the 1,3-diaza-1,3-diene ligand. A similar phenomenon has been observed in the imidoylamidine $NH=C(NEt_2)N=C(Ph)NHPh^{10}$ and the diazadiene NH=C(Et)N=CPh₂⁹ species monodentately coordinated to a Pt^{IV} center, where the imine ligands have distinct single and double CN bonds with no electron delocalization. The N-C bond lengths N(3)-C(4) [1.361(3) Å] and N(4)-C(4)[1.358(3) Å] in 1, N(3)–C(8) [1.346(4) Å] and N(4)–C(8) [1.355(4) Å] in 2, N(3)–C(3) [1.361(7) Å] and N(4)–C(3) [1.350(7) Å] in **3**, and N(3)–C(4) [1.352(5) Å] and N(4)– C(4) [1.347(5) Å] in 4 of $=C-(NMe_2)_2$ fragments correspond, within 3σ , to N(2)-C(1) [1.3395(16) Å] or N(3)-C(1) [1.3453(16) Å] bond lengths of NH=C(NMe₂)₂·HCl (Figure S3) and also to the typical Nsp²-Csp² single bond [av. 1.355(14) in C=C-N-(Csp³)₂ (Nsp² planar)²⁷].

⁽²⁶⁾ Belluco, U.; Benetollo, F.; Bertani, R.; Bombieri, G.; Michelin, R. A.; Mozzon, M.; Tonon, O.; Pombeiro, A. J. L.; Guedes da Silva, F. C. *Inorg. Chim. Acta.* 2002, *334*, 437. Michelin R. A.; Bertani, R.; Mozzon, M.; Sassi, A.; Benetollo, F.; Bombieri, G.; Pombeiro, A. J. L. *Inorg. Chem. Commun.* 2001, *4*, 275. Cini, R.; Fanizzi, F. P.; Intini, F. P.; Natile, G.; Pacifico, C. *Inorg. Chim. Acta.* 1996, *251*, 111. Gonzalez, A. M.; Cini, R.; Intini, F. P.; Pacifico, C.; Natile, G. *Inorg. Chem.* 2002, *41*, 470.

⁽²⁷⁾ Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1.

Liberation of the 1,3-Diaza-1,3-dienes. Insofar as 1,3diaza-1,3-dienes are useful synthons for many organic transformations^{28,29} and their formation easily occurs at the Pt^{II} center, we suggest an efficient route for liberation of the NH= $C(R)N=C(NMe_2)_2$ species from 1-3 by substitution with 1,2-bis-(diphenylphosphino)ethane (dppe) in accord with previous reports.^{6,8,9} Displacement in CDCl₃ resulted in precipitation of the known^{6,8,9,14} highly insoluble complex [Pt(dppe)₂](Cl)₂ (identified by ³¹P{¹H} NMR), which was separated by filtration from the solution containing the free diazadiene NH=C(R)N=C(NMe₂)₂ (5-7) (route I, Scheme 2); the latter (IUPAC name³⁰ N-[bis(dimethylamino)methylene]carboximidamide) were characterized by ESI-MS and ¹H and ¹³C{¹H} NMR spectroscopy (see Experimental Section).

It was previously reported that although N-unsubstituted-1,3-diaza-1,3-dienes are rather unstable, they have acceptable stability under normal conditions depending on donor/ acceptor properties of substituents at the C² atoms being more stable with electron-withdrawing groups.¹ We observed that, accordingly, 5 and 7 containing donor groups (Me and Et, respectively) are rather unstable in CDCl₃ and decompose after 6-12 h at room temperature, whereas phenyl-containing 6 is stable for at least 5 days under the same conditions.

The known synthetic pathways²⁹ to achieve 1,3-diaza-1,3dienes do not include direct interaction between organonitriles and imines. In particular, the 1,3-diaza-1,3-dienes $[Me_2N=C(R)N=C(NMe_2)_2](ClO_4)$, which are the most relevant to our systems, were obtained by treatment of $[(Me)_2N=C(Cl)Ph](Cl) (R = Ph)^{31} \text{ or } [Me_2N=C(OMe)Me]$ -(MeSO₄) (R = Me)³² with TMG. Thus, the nitrile-TMG coupling reported herein constitutes a potential alternative pathway to the synthesis of 1,3-diaza-1,3-dienes and a consequence of the metal-mediated coupling, and the liberation allows the facile synthesis of the previously unknown N-unsubstituted 1,3-diaza-1,3-dienes HN=C(R)N=(NMe₂)₂.

In Situ Conversion of the Diazadienes to 1,6-Dihydro-1,3,5-triazine-2-amines. In organic chemistry, 1,3-diaza-1,3dienes are useful for syntheses of six-membered nitrogencontaining heterocycles, and their involvement in [4 + 2]cycloadditions to give these systems was a subject of rapt attention.²⁸ We attempted to utilize the novel HN=C(R)N=C- $(NMe_2)_2$ species for cycloaddition and used diazadienes 5-7 in situ in the reaction with 1,3-di-p-tolylcarbodiimide (reactions of this reagent with various N-nucleophiles and dipoles are well-known^{20,21}) and observed that they readily react with (p-tol)N=C=N(tol-p) in CDCl₃ to generate 1,6-dihydro-1,3,5-triazine derivatives (IUPAC name³⁰ (6E)-N,N-dimethyl-1-(4-methylphenyl)-6-[(4-methylphenyl)imino]-1,6-dihydro-1,3,5-triazin-2-amines) (8-10) (route II, Scheme 2) due to the [4 + 2]-cycloaddition accompanying elimination of HNMe₂ (the latter was detected by ¹H NMR, 2.42, and ¹³C{¹H} NMR, 39.0 ppm); elimination of dimethylamine from pyrimidine or pyrimido [4,5-d] pyrimidine derivatives upon cycloaddition has several precedents in the past.³³

The ¹H NMR spectra of 8-10 display two *p*-CH₃Ph singlets in the range from 2.41 to 2.27 ppm and two NMe_2 singlets at 3.18-3.08 and 2.87-2.74 ppm, respectively, in a ratio of 1:5 obtained by integration. The ${}^{13}C{}^{1}H$ NMR spectra of 8-10 and the X-ray structures of 9 and 10 confirmed the formulation. ${}^{13}C{}^{1}H$ NMR spectra of 8–10 display three characteristic signals at 175.1–150.6 ppm, four (8 and 9) or five (10) characteristic signals at 146.6-131.4ppm, two characteristic signals at 41.5-40.4 ppm, and two characteristic signals at 21.6-21.3 ppm assigned to C=N, C_{ipso}, NMe₂, and CH₃Ph carbons, correspondingly.

In 9 (Figure 5) and 10 (Figure 6), characterized by X-ray crystallography, the N(1)-C(18), N(1)-C(1), N(2)-C(1), N(2)-C(8), and N(3)-C(8) bond lengths [1.370(2), 1.312-(2), 1.349(2), 1.330(2), 1.378(2), and 1.3714(17), 1.3154-(18), 1.3471(18), 1.3329(18), 1.3777(18) Å, respectively] agree well with the mean value reported for C=N delocalized double bonds in pyrimidine (overall) $[1.336(14) Å^{27}]$. However, the N(1)-C(1) bond lengths [1.312(2) and 1.3154-(18) Å, respectively] have values closer to the C=N double bond [av. 1.313(11) Å in the -N=C-N fragment of

⁽²⁸⁾ Sain, B.; Singh, S. P.; Sandhu, J. S. Tetrahedron 1992, 48, 4567. Muzumdar, S. N.; Mahajan, M. P. Synthesis 1990, 417. Muzumdar, S. N.; Mukherjee, S.; Sharma, A. K.; Sengupta, D.; Mahajan, M. P. Tetrahedron 1994, 50, 7579. Muzumdar, S. N.; Mahajan, M. P. Tetrahedron 1991, 47, 1473.

⁽²⁹⁾ Guzmán, A.; Romero, M.; Talamás, F. X.; Villena, R.; Greenhouse, R.; Muchowski, J. M. J. Org. Chem. 1996, 61, 2470.

⁽³⁰⁾ http://www.iupac.org/nomenclature/index.html.

⁽³¹⁾ Gompper, R.; Schneider, C. S. Synthesis 1979, 3, 215.

⁽³²⁾ Gompper, R; Heinemann, U. Angew. Chem. 1980, 92 (3), 208.

⁽³³⁾ Guillon, J.; Léger, J.-M.; Massip, S.; Thé, C.; Vidaillac, C.; Monti, J.-P.; Jarry, C. Synlett 2002, 1. Prajapati, D.; Thakur, A. J. Tetrahedron Lett. 2005, 46, 1433. Prajapati, D.; Gohain, M.; Thakur, A. J. Bioorg. Med. Chem. Lett. 2006, 16, 3537.

Figure 5. Thermal ellipsoid view of **9** with atom-numbering scheme. Thermal ellipsoids are drawn with 50% probability.

Figure 6. Thermal ellipsoid view of **10** with atom-numbering scheme. Thermal ellipsoids are drawn with 50% probability.

imidazole, av. 1.314(9) Å in the O–N=C–Csp² moiety of isoxazole²⁷], whereas N(1)–C(18), N(2)–C(1) bond lengths [1.370(2), 1.349(2), and 1.3714(17), 1.3471(18) Å, correspondingly] have values closer to Csp²–Nsp² single bond [av. 1.376(11) Å in =N–C=C moiety of imidazole²⁷].

The N-C bond lengths N(2)-C(8) in 9 and 10 [1.330(2) and 1.3329(18) Å, respectively] correspond, within 3σ , to the N(1)–C(1) bond length [1.3292(17) Å] of NH=C(NMe₂)₂. HCl (Figure S3) and also to the typical N-C single bond in substituted guanidinium species $[C-(NH_2)_3]^+$ [av. Nsp^2-Csp^2 is 1.328(15) Å²⁷]. This indicates the presence of electron delocalization for the N=C double bond, apparently induced by the neighboring NMe₂ and N(p-(MeC₆H₄) groups, i.e., analogous to substituted guanidinium species $[C-(NH_2)_3]^+$ [av. Nsp²-Csp² is 1.328(15) Å²⁷]. The N-C bond lengths N(4)-C(8) in 9 and 10 [1.345(2) and 1.3403-(18) Å, respectively] correspond, within 3σ , to the typical Nsp^2-Csp^2 single bond [av. 1.355(14) in C=C-N-(Csp^3)_2 (Nsp² planar)²⁷]. The N(5)-C(18) bond lengths [1.290(2) and 1.2811(18) Å, respectively] agree well, within 3σ , with the typical C=N double bond [mean value 1.279(8) Å in compounds with the $C_{Ar}-C=N-C$ moiety²⁷]. N(3)-C(18) and N(3)-C(8) in 9 and 10 [1.429(2), 1.378(2) and 1.4332-(17), 1.3777(18), respectively] correspond, within 3σ , to the typical Nsp²-Csp² single bond [av. 1.409(20) Å in imides $[Csp^2-C(=O)]_2-N-Csp^2$ (Nsp² planar)²⁷]. N(3)-C(11) in 9 and 10 [1.450(2) and 1.4443(17) Å, respectively] corresponds, within 3σ , to the typical C_{Ar}-N single bond [av. 1.390(30) Å in compounds with fragment C_{Ar} -N-(Csp³)₂²⁷]. In **9** and **10**, six-membered rings N(1)C(1)N(2)C(8)N(3)C-(18) are planar [rms of the deviations of atoms from the plane N(1)C(1)N(2)C(8)N(3)C(18) are 0.048(1) (**9**) and 0.063(1) Å (**10**)].

Thus, all data combined together indicate that 1,3-diaza-1,3-dienes **5**–**7** undergo [4 + 2] cycloaddition with 1,3-di*p*-tolylcarbodiimide with concomitant loss of HNMe₂, thus converting into cycloadducts **8**–**10**.

Dihydrotriazines are the known class of six-membered heterocycles, and some of these compounds possess antibacterial (e.g., against such bacteria as wild-type *Plasmodium falciparum* dihydrofolate reductase, *Escherichia coli* and *Staphilococcus aureus*, *Plasmodium berghei* in mice, *Plasmodium gallinaceum* in hens),^{34–37} anti-diabetic,³⁸ herbicidal,^{39,40} and antitumor activities⁴¹ and also show hypoglycemic properties.⁴² Other successful applications of the dihydrotriazines include controlling leukocytozoon disease in chickens,⁴³ use as insecticides,^{44,45} antithyroidal,⁴⁶ antimalarial,^{47–51} or anti-inflammatory agents,⁵² as well as use as corrosion inhibitors.⁵³

Dihydrotriazines are commonly prepared by (i) acidcatalyzed cyclocondensation between biguanidines, $^{35-38,54-56}$ cyanoguanidines, amines, $^{40,45,48,50,56-58}$ N'-amidinothioureas, 55 and carbonyl compounds, (ii) cyclocondensation of RCN with carbonyl compound and NH₃ in alcohols under harsh conditions, 59,60 (iii) cyclization of thiourea derivative⁵² or polymer-bound guanidines (solid-phase synthesis)⁶¹ with chlorcarbonylisocyanate and cyclization of two N'-(aminocarbonyl)imidocarbamates, 62 (iv) cyclization of imido-thiocarbamate derivative⁶³ or guanidines with isothiocyanate derivative and cyclization of amidines with imidoylisothiocyanates, 65 and (v) trimerization of RCN induced by alkyllithium

- (34) Hathaway, B. A.; Champine, J. E.; Casteneda, C.; VanWeelden, A. Abstracts of Papers, 57th Southeast/61st Southwest Joint Regional Meeting of the American Chemical Society, Memphis, TN, Nov 2005: American Chemical Society: Washington, DC, 2005; p 1.
- (35) Vilaivan, T.; Saesaengseerung, N.; Jarprung, D.; Kamchonwongpaisan, S.; Sirawaraporn, W.; Yuthavong, Y. *Bioorg. Med. Chem. Lett.* 2003, 11, 217.
- (36) Mehrotra, S.; Pandey, V.; Lakhan, R.; Srivastava, P. K. J. Indian Chem. Soc. 2002, 79, 176.
- (37) Mamalis, P. Ger. Offen. 1,934,120, 1970; Chem. Abstr. 1970, 72, 100764.
- (38) Moinet, G.; Cravo, D.; Doare, L.; Kergoat, M.; Mesangeau, D. PCT Int. Appl. WO 01 55,122, 2001; *Chem. Abstr.* 2001, 135, 137527.
- (39) Turnbull, M. D.; Crowley, P. J.; Chrystal, E. J. T.; Clough, J. M.; Bryan, I. B.; Beautement, K.; Barnett, S. P.; Ponsford, R. J.; Outred, D. J. PCT Int. Appl. WO 9615671, 1996; *Chem. Abstr.* **1996**, *125*, 107776.
- (40) Smrz, R.; Cech, J.; Auerhan, J.; Simek, A. Czech. Patent 119,884, 1966; Chem. Abstr. 1967, 67, 11509.
- (41) Hayashi, S.; Furukawa, M.; Yamamoto, J.; Nishizima, Y.; Sannomiya, E.; Ueki, H. *Kumamoto Pharm. Bull.* **1966**, *7*, 7; *Chem. Abstr.* **1967**, *66*, 74623.
- (42) Gajewski, F. Acta. Polon. Pharm. 1982, 39, 485.
- (43) Takeda Chemical Industries, Ltd. Jpn. Tokkyo Koho 80 29,050, 1980, Appl. 71/76,595, 1971; Chem. Abstr. 1981, 94, 77032.
- (44) Peake, C. J.; Lin, S. Y. Patent U.S. 5,565,451, 1996; Chem. Abstr. 1996, 125, 268213.
- (45) Peake, C. J.; Cullen, T. G.; Lew, A. C. Patent U.S. 5,300,503, 1994; *Chem. Abstr.* 1994, 121, 230800.
- (46) Mehrotra, S.; Roychowdhury, P. K.; Pandey, K. K.; Srivastava, P. K. *Arch. Pharmacal Res.* **1995**, *18*, 356; *Chem. Abstr.* **1995**, *124*, 135323. Prasad, R.; Srivastava, P. K. *Arch. Pharm.* **1993**, *326*, 963; *Chem. Abstr.* **1994**, *120*, 323503. Prasad, R.; Srivastava, P. K. J. Indian Chem. *Soc.* **1992**, *69*, 664.

derivatives⁶⁶ or sodium.⁶⁷ Hence, the [4 + 2]-cycloaddition of 1,3-diaza-1,3-diene to carbodiimides, described in this section, constitutes a novel synthetic approach to this useful class of heterocyclic species.

Final Remarks

The results from this work may be considered from three perspectives. First, it was observed that addition of HN= C(NMe₂)₂ to coordinated organonitriles is Pt^{II} mediated and results in the previously unknown ligated HN-unsubstituted 1,3-diaza-1,3-dienes HN=C(R)N=C(NMe₂)₂, and the reaction represents the first example of nitrile-guanidine coupling. The Pt^{II} center plays a dual role in the synthesis of the 1,3-diaza-1,3-dienes, i.e., it activates the organonitriles toward the nucleophilic addition of TMG and stabilizes the formed ligands (especially those with donor groups) by complexation. We are continuing to explore the metalmediated nitrile-guanidine integration and apply for that purpose various guanidines including more reactive species $HN=C(NHR)_2$ with partially substituted (R = alkyl, aryl) or unsubstituted (R = H) amido groups. Second, the consequence of the platinum(II)-mediated reactions followed by ligand liberation provide a novel and facile route to the previously unreported 1,3-diaza-1,3-dienes HN=C(R)N= $C(NMe_2)_2$. Third, we found that [4 + 2]-cycloaddition of the 1,3-diaza-1,3-dienes to carbodiimides-performed in situ within the "pop-the-cork strategy"⁸—constitutes a novel synthetic approach to this useful class of heterocycles, 1,6dihydro-1,3,5-triazines.

- (47) Mamalis, P.; Outred, D. J. Ger. Offen. 1,957,769, 1970; *Chem. Abstr.* 1971, 74, 76451.
- (48) Mamalis, P.; Outred, D. J. Ger. Offen. 1,965,711, 1970; Chem. Abstr. 1970, 73, 131035.
- (49) Mamalis, P. Ger. Offen. 1,963,759, 1970 Chem. Abstr. 1970, 73, 66632.
- (50) Sen, A. B.; Singh, P. R. J. Indian Chem. Soc. 1959, 36, 260.
- (51) Nair, C. P.; Ray, A. P. Indian J. Malariol. 1956, 10, 11; Chem. Abstr. 1957, 51, 73318. Bami, H. L. Excerpta Medica, Section 2: Physiology, Biochemistry and Pharmacology 1954, 7 (Sect. II), 1230; Chem. Abstr. 1955, 49, 66317. Bami, H. L. Indian J. Malariology 1953, 7, 283; Chem. Abstr. 1955, 49, 66316. Bami, H. L. Curr. Sci. 1954, 23, 124; Chem. Abstr. 1955, 49, 46316.
- (52) Gopalsamy, A.; Yang, H. Y. U. S. Pat. Appl. 49,320 (2002); Chem. Abstr. 2002, 136, 340706.
- (53) Kummar, A.; Patnaik, S. K.; Singh, M. M. Mater. Chem. Phys. 1998, 56, 243. Singh, M. M.; Gupta, A. Bull. Electrochem. 1996, 12, 511. Chenicek, J. A.; Thompson, R. B. Patent U.S. 2,734,807, 1956; Chem. Abstr. 1956, 50, 44225.
- (54) Saesaengseerung, N.; Vilaivan, T.; Thebtaranonth, Y. Synth. Commun. 2002, 32, 2089.
- (55) Li Loo, Ti. J. Am. Chem. Soc. 1954, 76, 5096.
- (56) Crowther, A. F. Br. Patent 709,906, 1954; Chem. Abstr. 1955, 49, 46455.
- (57) Ueda, T.; Toyoshima, S.; Furukawa, U. Japanese Patent 20,584 (1963); *Chem. Abstr.* **1964**, *60*, 16906.
- (58) Hitchings, G. H.; Roth, B. U.S. Patent 19610328 (1961); Chem. Abstr. 1961, 55, 93613.
- (59) Agency of Industrial Sciences and Technology, Jpn. Kokai Tokkyo Koho JP 82 26, 668 (1982); Chem. Abstr. 1982, 97, 23825.
- (60) Agency of Industrial Sciences and Technology Jpn. Kokai Tokkyo Koho 80 53, 276 (1980); *Chem. Abstr.* **1980**, *93*, 239469.
- (61) Gopalsamy, A.; Yang, H. J. Comb. Chem. 2001, 3, 278.
- (62) Piskala, A.; Gut, J. Coll. Czech. Chem. Commun. 1963, 28 1681.
- (63) Chandra, R.; Srivastava, P. K. J. Chem. Eng. Data 1983, 28, 278.
 (64) Crowther, A. F.; Curd, F. H. S.; Richardson, D. N.; Rose, F. L. J.
- Chem. Soc. **1948**, 1636.
- (65) Neuffer, J.; Goerdeler, J. *Chem. Ber.* **1971**, *104*, 3498.
- (66) Anker, R. M.; Cook, A. H. J. Chem. Soc. 1941, 323.
 (67) Ritter, J. J.; Anderson, R. D. J. Org. Chem. 1959, 24, 208.
- (07) Inter, J. J., Interson, K. D. J. Org. Chem. 1757, 24, 200

Experimental Section

Materials and Instrumentation. Guanidine HN=C(NMe₂)₂, 1,3-di-*p*-tolylcarbodiimide (*p*-tol)N=C=N(tol-*p*) (Aldrich), and solvents were obtained from commercial sources and used as received. Complexes *cis*-[PtCl₂(RCN)₂] (R = Me,¹⁵ Et¹⁶) were prepared in accord with the published methods. These compounds contain admixtures of the trans isomers (isomeric cis:trans ratio obtained by NMR integration is ca. 5:1 for R = Me,¹⁵ ca. 6:1 for R = Et¹⁶). The isomerically pure complexes *trans*-[PtCl₂(RCN)₂] (R = Et,¹⁶ Ph¹⁷) were obtained as previously described.

TLC was done on Merck 60 F254 SiO2 plates. Elemental analyses were obtained on a Hewlett-Packard 185B Carbon Hydrogen Nitrogen Analyzer at the Department of Organic Chemistry, St. Petersburg State University. Positive-ion FAB mass spectra were obtained on a Kratos MS-50C instrument by bombarding 3-nitrobenzyl alcohol (NBA) matrices of the samples with Xe atoms. Electrospray ionization mass spectra of 5-10 were recorded on a Bruker esquire₃₀₀₀ ion trap mass spectrometer in positive-ion mode equipped with an orthogonal electrospray interface (Bruker Daltonics, Bremen, Germany). The sample solution in methanol was delivered at a flow rate of 3 μ L/min using a syringe pump 74900 from Cole-Parmer Instrument Co. (Vernon Hills, IL), and N2 was used as drying and nebulizing gas (flow rates 5 L/min). Expected and experimental isotope distributions were compared. Infrared spectra (4000-400 cm^{-1}) were recorded on a BIO-RAD FTS 3000MX instrument in KBr pellets.

1D ¹H, ¹³C{¹H}, ³¹P{¹H}, NOE; 2D ¹H, ¹H-COSY, and ¹H, ¹³C-HETCOR NMR spectra were measured on a Bruker DPX 300 spectrometer at ambient temperature. Assignment of ¹H chemical shifts for the CH₂ and CH₃ protons from the Et group for all isomers of both **1** and **4** was based on 2D ¹H, ¹H-COSY NMR experiments. The description of the NMR spectra given in the synthetic part contains symbols {*E*} and {*Z*}, which designate the appropriate *E*-and *Z*-forms, e.g., "{*Z*-*EZ*" denote a ligand in the *Z*-form for the *EZ* isomer.

Synthetic Work. Reaction of *trans*-[PtCl₂(RCN)₂] and TMG. HN=C(NMe₂)₂ (48 μ L; 0.38 mmol) was added to a yellow solution of *trans*-[PtCl₂(RCN)₂] (0.19 mmol) in EtCN (1.5 mL) (R = Et) or CH₂Cl₂ (1.5 mL) (R = Ph) and left to stand for 1 h (R = Et) or 5 min (R = Ph) at 20–25 °C. In both cases, the greenish-yellow solution formed was evaporated to dryness, and the yellow residue was crystallized under a layer of Et₂O (1 mL) to form yellow powders which were washed with two 1-mL portions of acetone and one 1-mL portion of Et₂O (R = Ph) or two 1-mL portions of acetone:Et₂O = 1:1 mixture (R = Et), and both were dried in air at room temperature. Yields are 88 mg (77% (R = Et)) and 110 mg (83% (R = Ph)).

trans-[PtCl₂{NH=C(Et)N=C(NMe₂)₂] (1). Anal. Calcd for C₁₆H₃₆N₈Cl₂Pt: C, 31.68; H, 5.94; N, 18.48. Found: C, 31.78; H, 6.05; N, 18.83. FAB⁺-MS, *m/z*: 606 [M]⁺, 171 [NH=C(Et)N=C(NMe₂)₂ + H]⁺. TLC: $R_{\rm f}$ = 0.56 (eluent MeOH:CHCl₃ = 1:10). IR (KBr, selected bands) cm⁻¹: 3448 (br, w), 3327 (m-w), 3249 (w), ν (N-H); 2978 (m-w), 2925 (m-w), 2871 (m-w), ν (C-H from Et and N*Me*₂); 1566 (s), 1525 (s), ν (C=N); 1477 (s), 1448 (s), 1392 (s), δ (C-H from Et and N*Me*₂). ¹H NMR (CDCl₃), δ : 5.84 (s, br, {*Z*}-*ZZ*), 5.64 (s, br, {*Z*}-*EZ*), 5.42 (s, br, {*E*}-*EZ*), 5.40 (s, br, {*E*}-*EE*) (2H, NH), 3.08, 2.84, and 2.82 (m, 24H, N*Me*₂), 3.01 (q, 7.32 Hz, {*Z*}-*ZZ*), 1.24 (t, 7.32 Hz, {*Z*}-*EZ*), 1.14 (t, 7.32 Hz, {*E*}-*EZ*), 1.29 (t, 7.32 Hz, {*E*}-*EE*) (4H, CH₂ from Et), 1.34 (t, 7.32 Hz, {*Z*}-*ZZ*), 1.24 (t, 7.32 Hz, {*Z*}-*ZZ*), 1.14 (t, 7.32 Hz, {*E*}-*EZ*), 1.09 (t, 7.32 Hz, {*E*}-*EE*) (6H, CH₃ from Et). ¹³C{¹H} NMR (CDCl₃), δ : 178.2, 178.0, 176.0, 175.2, 163.2, 163.0, 162.9, 162.7

Pt^{II}-Mediated Nitrile-Tetramethylguanidine Coupling

(C=N), 40.6, 40.4, 40.3, 40.3 (NMe₂), 35.0, 34.5, 31.7, 31.2 (CH₂ from Et), 12.5, 12.4, 12.1, 11.9 (CH₃ from Et). Crystals suitable for X-ray diffraction study were obtained by slow evaporation of a hexane:chloroform (1:1, v/v) solution of **1**.

trans-[PtCl₂{NH=C(Ph)N=C(NMe₂)₂}₂] (2). Anal. Calcd for C₂₄H₃₆N₈Cl₂Pt: C, 41.02; H, 5.13; N, 15.95. Found: C, 40.79; H, 5.28; N, 15.75. FAB⁺-MS, m/z: 703 [M + H]⁺, 666 [M - Cl]⁺, 630 $[M - HCl - Cl]^+$, 219 $[NH=C(Ph)N=C(NMe_2)_2 + H]^+$. TLC: $R_f = 0.67$ (eluent MeOH:CHCl₃ = 1:10). IR (KBr, selected bands) cm⁻¹: 3489 (m-w), 3323 (m-w), v(N-H); 2937 (m-w), 2868 (w), ν (C-H from Ph and NMe₂); 1533 (s), ν (C=N and/or C=C from Ph); 1471 (m), 1421 (m-s), 1408 (m-s), 1390 (m-s), δ(C-H from NMe₂); 702 (m), δ (C-H from Ph). ¹H NMR (CDCl₃), δ : 7.65-7.61 (m, 4H), 7.40-7.28 (m, 6H) (Ph's), 6.30 (s, br, 2H, NH, $\{Z\}$ -ZZ), 3.14 (s, $\{Z\}$ -ZZ), 3.09 (s, $\{Z\}$ -EZ), 2.91 (s, $\{E\}$ -*EZ*), 2.73 (s, {*E*}-*EE*) (24H, NMe₂). ¹³C{¹H} NMR (CDCl₃), δ : 170.8, 163.7 (C=N), 130.6, 128.9, 127.4 (Ph's), 40.8, 40.3 (NMe₂). Complex 2 crystallizes from a CH_2Cl_2 :hexane (1:1, v/v) mixture as *trans*-[PtCl₂{*N*H=C(Ph)N=C(NMe₂)₂]₂] (2) and from a CHCl₃: hexane (1:1, v/v) mixture as the monohydrate trans-[PtCl₂{NH= $C(Ph)N=C(NMe_2)_2$]·H₂O·0.5CHCl₃ (**2b**), and structures of both 2 and 2b were determined by X-ray crystallography.

Reaction of cis-[PtCl₂(RCN)₂] and TMG. HN=C(NMe₂)₂ (30 μ L; 0.24 mmol) was added to a yellow suspension of *cis*-[PtCl₂-(MeCN)₂] (0.12 mmol) in MeCN (1 mL) or a yellow solution of cis-[PtCl₂(EtCN)₂] (0.12 mmol) in EtCN (1 mL). In the case of cis-[PtCl₂(MeCN)₂], a pale-yellow precipitate starts to form immediately. In both cases, bright yellow solutions were evaporated to dryness. The solid residues formed were washed with two 2-mL portions of acetone (R = Me) or two 1.5-mL portions of a mixture acetone:hexane = 1:2 (R = Et) and one 1.5-mL portion of Et_2O (R = Me, Et) and dried in air at 20–25 °C. The washing waters were kept in air for slow evaporation to two-thirds of the initial volume. Released pale-yellow precipitates were separated by decantation and washed with two 0.5-mL portions of Et_2O (R = Me) or one 0.5-mL portion of acetone:hexane = 1:2 mixture and one 0.5-mL portion of Et₂O (R = Et) and dried in air at 20-25 °C. The separated compound dried in air at 20-25 °C and was combined with the first fraction. Yields are 50 mg (72% (R = Me))and 43 mg (60% (R = Et)).

cis-[PtCl₂{NH=C(Me)N=C(NMe₂)₂]₂] (3). Anal. Calcd for C₁₄H₃₂N₈Cl₂Pt: C, 29.06; H, 5.53; N, 19.37. Found: C, 28.99; H, 5.57; N, 19.28. FAB⁺-MS, *m/z*: 601 [M + Na]⁺, 578 [M]⁺, 543 $[M - Cl]^+$, 506 $[M - 2Cl]^+$, 157 $[NH=C(Me)N=C(NMe_2)_2 +$ H]⁺. TLC: $R_f = 0.54$ (eluent MeOH:CHCl₃ = 1:5). IR (KBr, selected bands) cm⁻¹: 3467 (br, m-w), 3257 (m-s), v(N-H); 2925 (m), 2893 (m), 2797 (m-w), v(C-H from Me and NMe₂); 1544 (s), ν (C=N); 1484 (s), 1423 (s), 1390 (s), δ (C-H from Me and NMe₂). ¹H NMR (CDCl₃), δ : 6.88 (s, br, {E}-EE), 6.48 (s, br, {*E*}-*EZ*), 6.16 (s, br, {*Z*}-*EZ* and {*Z*}-*ZZ*) (2H, N*H*), 3.07 (s), 3.02 (s), 2.87 (s), 2.84 (s) (24H, NMe₂), 2.56 (s, {E}-EE), 2.27 (s, {E}-*EZ*), 2.13 (s, $\{Z\}$ -*EZ*), 2.11 (s, $\{Z\}$ -*ZZ*) (*Me*). ¹³C $\{^{1}H\}$ NMR (CDCl₃), δ: 173.1, 172.2, 171.5, 163.0, 162.9 (C=N), 40.6, 40.5, 40.2 (NMe₂), 28.0, 27.2, 25.5, 24.0 (Me). Crystals suitable for X-ray diffraction study were obtained by slow evaporation of a hexane: chloroform (1:1, v/v) solution of 3.

cis-[PtCl₂{NH=C(Et)N=C(NMe₂)₂] (4). Anal. Calcd for C₁₆H₃₆N₈Cl₂Pt: C, 31.68; H, 5.94; N, 18.48. Found: C, 31.35; H, 5.93; N, 18.37. FAB⁺-MS, *m*/*z*: 629 [M + Na]⁺, 606 [M]⁺, 534 [M - HCl - Cl]⁺, 171 [NH=C(Et)N=C(NMe₂)₂ + H]⁺. TLC: $R_{\rm f} = 0.50$ (eluent MeOH:CHCl₃ = 1:10). IR (KBr, selected bands) cm⁻¹: 3510 (br, m), 3267 (m-s), ν (N–H); 2934 (m), 2872 (m), ν (C–H from Me and N*Me*₂); 1544 (s), ν (C=N); 1472 (m-s), 1422

(m-s), 1397 (m-s), 1389 (s), δ (C–H from Et and N*Me*₂). ¹H NMR (CDCl₃), δ : 6.54 (s, br, {*E*}-*EE*), 6.32 (s, br, {*Z*}-*EZ*), 6.17 (s, br, {*E*}-*EZ*), 5.90 (s, br, {*Z*}-*ZZ*) (2H, N*H*), 3.07 (s), 3.03 (s), 2.91 (s) and 2.84 (s) (24H, N*Me*₂), 2.97–2.91 (m, 7.26 Hz, {*E*}-*EE*), 2.74 (q, 7.26 Hz, {*E*}-*EZ*), 2.40 (q, 7.26 Hz, {*Z*}-*EZ*), 2.32 (q, 7.26 Hz, {*Z*}-*ZZ*) (4H, C*H*₂ from Et), 1.27 (t, 7.26 Hz, {*E*}-*EE*), 1.19–1.09 (m, {*E*}-*EZ*, {*Z*}-*EZ*, {*Z*}-*ZZ*) (6H, C*H*₃ from Et). ¹³C{¹H} NMR (CDCl₃), δ : 177.9, 175.5, 163.2, 163.0 (*C*=N), 40.6, 40.3 (N*Me*₂), 34.6 (*CH*₂ from Et), 1.2.2 (*CH*₃ from Et). Crystals suitable for X-ray diffraction study were obtained by slow evaporation of a hexane: chloroform (1:1, v/v) solution of **4**.

Liberation of the Diazadiene from *trans*-[PtCl₂{NH=C(R)-N=C(NMe₂)₂}₂]. 1,2-Bis-(diphenylphosphino)ethane (dppe; 0.2 mmol) was added to a solution of complex (1-3) (0.1 mmol) in CDCl₃ (1 mL) at 20–25 °C, and the mixture was left to stand for 20, 30, and 240 min (for 1, 2, and 3, respectively) until a colorless precipitate of the known [Pt(dppe)₂](Cl)₂^{6,8,9,14} (³¹P{¹H} NMR in CDCl₃: 48.4 ppm, J_{Pt-P} 2348.5 Hz; lit.⁶⁸ 45.7 ppm, J_{Pt-P} 2360.5 Hz) was released. The latter complex was filtered off, and NH= C(R)N=C(NMe₂)₂, liberated quantitatively, was characterized in the filtrate by NMR and ESI-MS methods.

HN=C(Me)N=C(NMe₂)₂ (5). MS (ESI⁺) m/z: 157 [M + H]⁺. ¹H NMR (CDCl₃), δ : 2.81 (s, 12H, NMe₂), 2.03 (s, 3H, Me). ¹³C-{¹H} NMR (CDCl₃), δ : 172.1, 162.1 (C=N), 40.0 (NMe₂), 25.9 (Me).

HN=C(Et)N=C(NMe₂)₂ (6). MS (ESI⁺) m/z: 171 [M + H]⁺. ¹H NMR (CDCl₃), δ : 2.80 (s, 12H, NMe₂), 2.29 (q, 7.27 Hz, 2H, CH₂), 1.15 (t, 7.27 Hz, 3H, CH₃) (Et). ¹³C{¹H} NMR (CDCl₃), δ : 176.0, 162.4 (C=N), 40.0 (NMe₂), 32.0 (CH₂), 11.8 (CH₃) (Et).

HN=C(Ph)N=C(NMe₂)₂ (**7**). MS (ESI⁺) m/z: 219 [M + H]⁺. ¹H NMR (CDCl₃), δ : 7.35 (d, 3H), 7.29 (d, 2H) (Ph's), 2.79 (s, 12H, NMe₂). ¹³C{¹H} NMR (CDCl₃), δ : 170.4, 162.9 (C=N), 139.4 (C_{ipso}), 130.0, 128.4, 127.9 (Ph's), 40.0 (NMe₂).

Reaction of Diazadienes 5–7 with 1,3-Di*p***-tolylcarbodiimide.** Dppe (40 mg, 0.10 mmol) was added to a solution of **1–3** (0.05 mmol) in CDCl₃ (1 mL), and the reaction mixture was left to stand at 20–25 °C for 20, 30, and 240 min (for **1**, **2**, and **3**, respectively), whereupon the colorless precipitate of [Pt(dppe)₂](Cl)₂ was removed by filtration and the filtrate was added to the suspension of 1,3-di-*p*-tolylcarbodiimide (23 mg, 0.10 mmol) in CDCl₃ (1 mL), and the new reaction mixture was stirred for 20 h at 20–25 °C. The pale-yellow (R = Me, Et) or bright-yellow (R = Ph) suspension formed was evaporated to dryness. The solid residue thus obtained was crystallized under a layer of EtOH (0.75 mL) to form pale-yellow (R = Me, Et) or bright-yellow (R = Ph) precipitate, which was filtered off after 2.5 h and washed with one 0.5-mL portion of EtOH. Yields are 16 mg (47% (R = Me; **8**)), 17 mg (50% (R = Et; **9**)), and 21 mg (53% (R = Ph; **10**)).

(6*E*)-*N*,*N*,4-Trimethyl-1-(4-methylphenyl)-6-[(4-methylphenyl)imino]-1,6-dihydro-1,3,5-triazin-2-amine (8). MS (ESI⁺) m/z: 334 [M + H]⁺. ¹H NMR (CDCl₃), δ : 7.32 (d, 8 Hz, 2H), 7.22 (d, 8 Hz, 2H), 7.02 (d, 8 Hz, 2H), 6.88 (d, 8 Hz, 2H) (p-CH₃Ph), 3.08 (s, 1H), 2.74 (s, 5H) (NM e_2), 2.38 (s, 3H), 2.27 (s, 3H) (p-CH₃Ph), 2.21 (s, 3H, Me). ¹³C{¹H} NMR (CDCl₃), δ : 171.4, 160.7, 150.6 (*C*=N), 146.6, 138.1, 137.8, 131.4 (C_{ipso}), 129.7, 129.2, 123.3 (p-CH₃Ph), 41.2, 40.4 (NM e_2), 26.4 (Me), 21.6, 21.3 (p-CH₃Ph).

(6*E*)-4-Ethyl-*N*,*N*-dimethyl-1-(4-methylphenyl)-6-[(4-methylphenyl)imino]-1,6-dihydro-1,3,5-triazin-2-amine (9). MS (ESI⁺) m/z: 348 [M + H]⁺. ¹H NMR (CDCl₃), δ : 7.33 (d, 8 Hz, 2H), 7.22 (d, 8 Hz, 2H), 7.01 (d, 8 Hz, 2H), 6.94 (d, 8 Hz, 2H) (*p*-

⁽⁶⁸⁾ Anderson, G. K.; Davies, J. A.; Schoeck, D. J. Inorg. Chim. Acta 1983, 76, L251.

Gushchin et al.

Table 1. Crystallographic Data for 1, 2, 2b, 3, 4, 9, 10, and 11

	1	2	2b	3	4	9	10	11
empirical formula	C16H36Cl2N8Pt	C24H36Cl2N8Pt	C49H77Cl7N16O2Pt2	C15H33Cl5N8Pt	C17H37Cl5N8Pt	C ₂₁ H ₂₅ N ₅	C25H25N5	C ₅ H ₁₄ ClN ₃
fw	606.52	702.60	1560.60	697.83	725.89	347.46	395.50	151.64
temp. (K)	120(2)	120(2)	120(2)	105(2)	120(2)	120(2)	120(2)	120(2)
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073 Å
cryst syst	monoclinic	monoclinic	triclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
space group	$P2_{1}/n$	$P2_{1}/c$	$P\overline{1}$	C2/c	C2/c	$P2_1/n$	$P2_{1}/c$	$P2_{1}/n$
<i>a</i> (Å)	6.5007(2)	10.4573(8)	10.1658(8)	17.5830(8)	19.0947(11)	10.2649(4)	6.05060(10)	6.9690(2)
b (Å)	9.3467(4)	11.2403(12)	11.2026(8)	12.5070(7)	12.4624(8)	15.1605(7)	16.3902(4)	13.1080(4)
<i>c</i> (Å)	18.9815(6)	12.2694(8)	15.1162(10)	12.3850(4)	12.5981(6)	12.3997(4)	21.2859(5)	9.2807(3)
α (deg)	90	90	75.797(5)	90	90	90	90	90
β (deg)	98.563(2)	112.070(7)	85.330(7)	113.346(2)	107.268(4)	104.013(3)	93.6880(10)	104.757(2)
γ (deg)	90	90	65.379(6)	90	90	90	90	90
$V(Å^3)$	1140.46(7)	1336.5(2)	1516.7(2)	2500.6(2)	2862.8(3)	1872.23(13)	2106.56(8)	819.82(4)
Z	2	2	1	4	4	4	4	4
$\rho_{\rm calcd} ({\rm mg}/{\rm m}^3)$	1.766	1.746	1.709	1.854	1.684	1.233	1.247	1.229
μ (Mo K α) (mm ⁻¹)	6.404	5.479	4.967	6.165	5.389	0.076	0.076	0.392
no. reflns	9105	17 165	28 628	25 331	21 418	17 497	50 887	14 254
no. unique reflns	2618	3050	6936	2868	3299	4066	4851	1867
R _{Int}	0.0376	0.0569	0.0558	0.0521	0.0634	0.0452	0.0651	0.0433
$R1^a (I \ge 2\sigma)$	0.0201	0.0253	0.0334	0.0292	0.0303	0.0453	0.0439	0.0286
$w \mathbb{R}2^b \ (I \ge 2 \ \sigma)$	0.0403	0.0515	0.0688	0.0521	0.0580	0.1036	0.1007	0.0697

 ${}^{a} \mathrm{R1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b} w \mathrm{R2} = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]^{1/2}.$

Table 2. Bond Distances (Å) and Angles (deg) for $1,\,2,\,3$ and 4

1		2		3		4	
Pt(1) - N(1)	2.015(2)	Pt(1) - N(1)	2.009(3)	Pt(1) - N(1)	1.995(3)	Pt(1) - N(1)	2.001(3)
Pt(1) - Cl(1)	2.3050(7)	Pt(1)-Cl(1)	2.2999(9)	Pt(1)-Cl(1)	2.3102(11)	Pt(1)-Cl(1)	2.3187(9)
N(1) - C(1)	1.296(3)	N(1) - C(1)	1.305(4)	N(1) - C(1)	1.300(5)	N(1) - C(1)	1.300(5)
C(1) - C(2)	1.503(3)	N(2) - C(1)	1.346(4)	C(1) - C(2)	1.500(7)	C(1) - C(2)	1.518(5)
C(2) - C(3)	1.528(4)	N(2) - C(8)	1.324(4)	N(2) - C(1)	1.332(7)	C(2) - C(3)	1.503(6)
N(2) - C(1)	1.357(3)	N(3)-C(8)	1.346(4)	N(2) - C(3)	1.308(7)	N(2) - C(1)	1.334(5)
N(2) - C(4)	1.326(3)	N(3) - C(9)	1.453(5)	N(3) - C(3)	1.361(7)	N(2) - C(4)	1.317(5)
N(3) - C(4)	1.361(3)	N(3) - C(10)	1.464(5)	N(3) - C(4)	1.451(7)	N(3) - C(4)	1.352(5)
N(3)-C(5)	1.458(4)	N(4) - C(8)	1.355(4)	N(3)-C(5)	1.450(7)	N(3)-C(5)	1.443(5)
N(3)-C(6)	1.467(3)	N(4) - C(11)	1.476(4)	N(4) - C(3)	1.350(7)	N(3)-C(6)	1.456(5)
N(4) - C(4)	1.358(3)	N(4) - C(12)	1.441(4)	N(4) - C(6)	1.447(8)	N(4) - C(4)	1.347(5)
N(4) - C(7)	1.457(3)			N(4) - C(7)	1.453(8)	N(4) - C(7)	1.452(5)
N(4) - C(8)	1.463(3)					N(4) - C(8)	1.458(5)
N(1) - Pt(1) - N(1A)	180.00(12)	N(1) - Pt(1) - N(1A)	179.998(1)	N(1) - Pt(1) - N(1)	97.03(19)	N(1) - Pt(1) - N(1A)	94.94(18)
N(1)-Pt(1)-Cl(1A)	91.07(7)	N(1)-Pt(1)-Cl(1A)	92.92(9)	N(1) - Pt(1) - Cl(1)	176.53(10)	N(1) - Pt(1) - Cl(1)	177.27(10)
Cl(1)-Pt(1)-Cl(1A)	180.0	Cl(1)-Pt(1)-Cl(1A)	179.999(1)	N(1) - Pt(1) - Cl(1)	86.37(10)	N(1)-Pt(1)-Cl(1A)	87.19(9)
C(1) - N(1) - Pt(1)	130.76(17)	C(1) = N(1) = Pt(1)	135.3(2)	Cl(1)-Pt(1)-Cl(1)	90.24(6)	Cl(1)-Pt(1)-Cl(1A)	90.73(5)
N(1)-C(1)-C(2)	119.7(2)	N(1) - C(1) - C(2)	119.3(3)	C(1) - N(1) - Pt(1)	133.1(4)	C(1) = N(1) = Pt(1)	131.7(3)
N(1)-C(1)-N(2)	124.9(2)	N(1) - C(1) - N(2)	125.7(3)	N(1)-C(1)-C(2)	119.0(5)	N(1) - C(1) - C(2)	118.5(3)
N(2)-C(1)-C(2)	115.2(2)	N(2) - C(1) - C(2)	114.9(3)	N(1)-C(1)-N(2)	126.6(5)	N(1) - C(1) - N(2)	127.4(4)
C(4) - N(2) - C(1)	123.7(2)	C(8) - N(2) - C(1)	125.9(3)	N(2)-C(1)-C(2)	114.2(4)	N(2) - C(1) - C(2)	113.8(3)
N(2)-C(4)-N(3)	118.2(2)	N(2) - C(8) - N(3)	118.5(3)	C(3) - N(2) - C(1)	126.4(4)	C(4) - N(2) - C(1)	126.8(3)
C(4) - N(3) - C(5)	118.7(2)	C(8) - N(3) - C(9)	119.2(3)	N(2)-C(3)-N(3)	124.5(5)	N(2) - C(4) - N(3)	124.0(4)
C(4) - N(3) - C(6)	122.4(2)	C(8)-N(3)-C(10)	122.1(3)	C(3) - N(3) - C(4)	119.9(5)	C(4) - N(3) - C(5)	120.6(3)
C(5)-N(3)-C(6)	114.7(2)	C(9) - N(3) - C(10)	114.5(3)	C(3) - N(3) - C(5)	122.3(4)	C(4) - N(3) - C(6)	122.1(4)
N(2)-C(4)-N(4)	124.8(2)	N(2) - C(8) - N(4)	123.4(3)	C(5) - N(3) - C(4)	115.4(5)	C(5) - N(3) - C(6)	115.1(3)
C(4) - N(4) - C(7)	123.3(2)	C(8) - N(4) - C(11)	122.3(3)	N(2)-C(3)-N(4)	119.0(6)	N(2) - C(4) - N(4)	117.8(4)
C(4) - N(4) - C(8)	121.5(2)	C(8)-N(4)-C(12)	121.1(3)	C(3) - N(4) - C(6)	123.0(6)	C(4) - N(4) - C(7)	119.2(3)
C(7) - N(4) - C(8)	114.5(2)	C(12) - N(4) - C(11)	114.1(3)	C(3) - N(4) - C(7)	118.0(6)	C(4) - N(4) - C(8)	123.5(4)
N(4) - C(4) - N(3)	116.9(2)	N(3)-C(8)-N(4)	117.6(3)	C(6) - N(4) - C(7)	115.7(6)	C(7) - N(4) - C(8)	113.9(3)
				N(4) - C(3) - N(3)	116.1(6)	N(4) - C(4) - N(3)	117.6(3)

CH₃*Ph*), 3.10 (s, 1H), 2.75 (s, 5H) (N*Me*₂), 2.46 (q, 7.27 Hz, 2H, C*H*₂ from Et), 2.39 (s, 3H), 2.27 (s, 3H) (*p*-C*H*₃Ph), 1.22 (t, 7.27 Hz, 3H, C*H*₃ from Et). ¹³C{¹H} NMR (CDCl₃), δ : 175.1, 160.9, 150.9 (*C*=N), 146.4, 138.0, 137.8, 131.4 (*C*_{ipso}), 129.7, 129.2, 129.1, 123.7 (*p*-CH₃*Ph*), 41.3, 40.4 (N*Me*₂), 32.5 (*C*H₂ from Et), 21.6, 21.3 (*p*-CH₃Ph), 11.6 (*C*H₃ from Et). Crystals suitable for X-ray single-crystal diffraction study were obtained by slow evaporation of a toluene:chloroform (1:1, v/v) solution of **9**.

(6*E*)-*N*,*N*-Dimethyl-1-(4-methylphenyl)-6-[(4-methylphenyl)imino]-4-phenyl-1,6-dihydro-1,3,5-triazin-2-amine (10). MS (ESI⁺) m/z: 396 [M + H]⁺. ¹H NMR (CDCl₃), δ : 8.33 (d, 2H), 7.49–

1692 Inorganic Chemistry, Vol. 46, No. 5, 2007

7.39 (m, 5H), 7.26 (t, 2H), 7.08 (s, 4H) (*p*-CH₃*Ph*), 3.18 (s, 1H), 2.87 (s, 5H) (NM*e*₂), 2.41 (s, 3H), 2.33 (s, 3H) (*p*-CH₃Ph). ¹³C-{¹H} NMR (CDCl₃), δ : 165.3, 161.4, 151.2 (*C*=N), 146.6, 138.2, 137.8, 137.3, 131.4 (*C*_{ipso}), 131.8, 129.8, 129.4, 129.3, 129.0, 128.4, 124.0 (*p*-CH₃*Ph*), 41.5, 40.5 (NM*e*₂), 21.6, 21.3 (*p*-CH₃Ph). Crystals suitable for X-ray diffraction study were obtained by slow evaporation of a toluene:chloroform (1:1, v/v) solution of **10**.

For comparison of X-ray data we prepared crystals of TMG· HCl (11) and determined its X-ray structure.

X-ray Structure Determinations. Crystals were immersed in cryo-oil, mounted in a nylon loop, and measured at a temperature

Table 3. Bond Distances (Å) and Angles (deg) for 9 a	ind 1	1	l	(l	((l	(1			1	Ċ	(1	1	ı	n	D	n	1	1	ı	l	ŀ	((ć	ć	ć	ć	ć	Ċ	Ċ	c	(((((1	1	ŀ	ŀ	ı	1	1	U	ŀ	1	1	1	ŀ	ŀ	1	l	ı	ı	ı	ı	ı	l	l	ŀ	ı	((((c	ć	ć	ć	d	d	d	ć	ć	c	c	c	C	C	c	((((1	1	1	ı	ŀ	ı	U	10	ı	ŀ	l	l	l	l	l	l	l	l	ı	1	n	D	r	1	a	ć))	9	1		ſ	1)	C	E	f))	ş	۶	2	2	e	ŀ	1	(((5	s	e
---	-------	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	--	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---

()	0 0	
bonds and angles	9	10
N(1) - C(1)	1.312(2)	1.3154(18)
N(2) - C(1)	1.349(2)	1.3471(18)
N(2)-C(8)	1.330(2)	1.3329(18)
N(4) - C(8)	1.345(2)	1.3403(18)
N(4) - C(9)	1.465(2)	1.4664(19)
N(4) - C(10)	1.465(2)	1.4665(17)
N(3)-C(8)	1.378(2)	1.3777(18)
N(3)-C(11)	1.450(2)	1.4443(17)
N(3)-C(18)	1.429(2)	1.4332(17)
N(5)-C(18)	1.290(2)	1.2811(18)
N(5)-C(19)	1.409(2)	1.4148(18)
N(1)-C(18)	1.370(2)	1.3714(17)
N(1)-C(1)-N(2)	127.52(15)	127.44(12)
C(8) - N(2) - C(1)	116.09(14)	116.48(12)
N(2) - C(8) - N(4)	117.97(14)	117.43(12)
C(8) - N(4) - C(9)	118.20(15)	117.79(12)
C(9) - N(4) - C(10)	114.30(13)	114.22(11)
C(8) - N(4) - C(10)	125.31(14)	126.03(12)
N(4) - C(8) - N(3)	120.55(15)	121.44(12)
N(2) - C(8) - N(3)	121.46(14)	121.12(12)
C(8) - N(3) - C(11)	122.36(13)	123.22(11)
C(18) - N(3) - C(11)	117.14(12)	117.66(11)
C(8) - N(3) - C(18)	118.88(13)	118.49(11)
N(5)-C(18)-N(3)	115.40(14)	116.21(12)
C(18) - N(5) - C(19)	122.29(14)	120.41(12)
N(5)-C(18)-N(1)	126.60(14)	125.79(13)
N(1)-C(18)-N(3)	117.99(13)	118.00(12)
C(1) - N(1) - C(18)	117.29(13).	117.11(12).

of 105–120 K. X-ray diffraction data was collected by means of a Nonius KappaCCD diffractometer using Mo K α radiation (λ = 0.71073 Å). The DENZO/SCALEPACK⁶⁹ or EvalCCD⁷⁰ program packages were used for cell refinements and data reductions. All of the structures were solved by direct methods using SHELXS-97,⁷¹ SIR-97,⁷² SIR2002,⁷³ or SIR2004.⁷⁴ An empirical absorption correction was applied to all of the data (XPREP in SHELXTL⁷⁵ or SADABS;⁷⁶ T_{max}/T_{min} were 0.2226/0.3371, 0.4048/ 0.7199, 0.4048/0.7199, 0.2950/0.7818, 0.4672/0.7273, 0.9870/

- (69) Otwinowski, Z.; Minor, W. In *Methods in Enzymology, Macromolecular Crystallography, Part A*; Carter, C. W., Sweet, J., Eds.; Academic Press: New York, **1997**; Vol. 276, p 307.
- (70) Duisenberg, A. J. M.; Kroon-Batenburg, L. M. J.; Schreurs, A. M. M. J. Appl. Crystallogr. 2003, 36, 220.
- (71) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Determination; University of Göttingen: Göttingen, Germany, 1997.
- (72) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Crystallogr. 1993, 26, 343.
- (73) Burla, M. C.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2003, 36, 1103.
- (74) Burla, M. C.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38, 381.
- (75) Sheldrick, G. M. SHELXTL, v. 6.14-1; Bruker Analytical X-ray Systems, Bruker AXS, Inc.: Madison, WI, 2005.

0.9894, 0.9763/0.9921, and 0.9222/0.9414, respectively, for 1, 2, 2b, 3, 4, 9, 10, and 11). Structural refinements were carried out using SHELXL-9777 with WinGX78 graphical user interface. Complex 2 was crystallized without and with solvent of crystallization in two different space groups $P2_1/c$ (2) and P1 (2b). The NH, NH₂, and H₂O hydrogens were located from the difference Fourier map and either refined isotropically (2) or constrained to ride on their parent atoms. Other hydrogens were positioned geometrically and constrained to ride on their parent atoms. The asymmetric unit of 2b contains two independent halves of the Pt complexes. In all Pt structures, Pt atoms are coordinated by two Cl atoms and two N atoms in a slightly distorted square planar geometry. The CHCl₃ solvent molecule in 2b is disordered over two positions with two shared Cl atoms and equal occupation parameters of 0.5. Also, in 3 the hydrogen and chlorine atoms of the CHCl₃ solvent are disordered over two positions with equal occupation parameters of 0.5. In 4, the CHCl₃ solvent molecule was refined over two positions with equal occupancy of 0.5. The crystallographic details are summarized in Table 1. The selected bond lengths and angles are given in the figure captions and Tables 2 and 3.

Acknowledgment. This work has been supported by the Russian Fund for Basic Research (grants 05-03-32140, 06-03-32065, and 06-03-90901), the Scientific Council of the President of the Russian Federation (grant MK-1040.2005.3), the Government of St. Petersburg (grant 46/06), and the Academy of Finland (grant 110465). We thank Dr. S. I. Selivanov for experimental assistance, Dr. A. V. Makary-cheva-Mikhailova for valuable discussions, and Prof. A. J. L. Pombeiro for putting IR facilities at the author's disposal.

Note Added after ASAP Publication: This article was released ASAP on February 1, 2007 with minor errors in the Title. The correct version was posted on February 12, 2007.

Supporting Information Available: Figures S1 and S3 with thermal ellipsoid views of **2b** and **11**, respectively, Figures S2, S4, and S5 with hydrogen-bonding schemes for **2b**, **3**, and **4**, Tables S1–S3 with hydrogen bonds for **2b**, **3**, and **4**, and X-ray crystallographic files in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC061884B

- (76) Sheldrick, G. M. SADABS-Bruker Nonius scaling and absorption correction, v 2.10; Bruker AXS, Inc.: Madison, WI, 2003.
- (77) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.
- (78) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.